Category Archives: english

Asynchronous commands

With asynchronous commands we have typical commands from the Model View ViewModel world that return asynchronously.

Whenever that happens we want result reporting and progress reporting. We basically want something like this in QML:

Item {
  id: container
  property ViewModel viewModel: ViewModel {}

  Connections {
    target: viewModel.asyncHelloCommand
    onExecuteProgressed: {
        progressBar.value = value
        progressBar.maximumValue = maximum
    }
  }
  ProgressBar {
     id: progressBar
  }
  Button {
    enabled: viewModel.asyncHelloCommand.canExecute
    onClicked: viewModel.asyncHelloCommand.execute()
  }
}

How do we do this? First we start with defining a AbstractAsyncCommand (impl. of protected APIs here):

class AbstractAsyncCommand : public AbstractCommand {
    Q_OBJECT
public:
    AbstractAsyncCommand(QObject *parent=0);

    Q_INVOKABLE virtual QFuture<void*> executeAsync() = 0;
    virtual void execute() Q_DECL_OVERRIDE;
signals:
    void executeFinished(void* result);
    void executeProgressed(int value, int maximum);
protected:
    QSharedPointer<QFutureInterface<void*>> start();
    void progress(QSharedPointer<QFutureInterface<void*>> fut, int value, int total);
    void finish(QSharedPointer<QFutureInterface<void*>> fut, void* result);
private:
    QVector<QSharedPointer<QFutureInterface<void*>>> m_futures;
};

After that we provide an implementation:

#include <QThreadPool>
#include <QRunnable>

#include <MVVM/Commands/AbstractAsyncCommand.h>

class AsyncHelloCommand: public AbstractAsyncCommand
{
    Q_OBJECT
public:
    AsyncHelloCommand(QObject *parent=0);
    bool canExecute() const Q_DECL_OVERRIDE { return true; }
    QFuture<void*> executeAsync() Q_DECL_OVERRIDE;
private:
    void* executeAsyncTaskFunc();
    QSharedPointer<QFutureInterface<void*>> current;
    QMutex mutex;
};

#include "asynchellocommand.h"

#include <QtConcurrent/QtConcurrent>

AsyncHelloCommand::AsyncHelloCommand(QObject* parent)
    : AbstractAsyncCommand(parent) { }

void* AsyncHelloCommand::executeAsyncTaskFunc()
{
    for (int i=0; i<10; i++) {
        QThread::sleep(1);
        qDebug() << "Hello Async!";
        mutex.lock();
        progress(current, i, 10);
        mutex.unlock();
    }
    return nullptr;
}

QFuture<void*> AsyncHelloCommand::executeAsync()
{
    mutex.lock();
    current = start();
    QFutureWatcher<void*>* watcher = new QFutureWatcher<void*>(this);
    connect(watcher, &QFutureWatcher<void*>::progressValueChanged, this, [=]{
        mutex.lock();
        progress(current, watcher->progressValue(), watcher->progressMaximum());
        mutex.unlock();
    });
    connect(watcher, &QFutureWatcher<void*>::finished, this, [=]{
        void* result=watcher->result();
        mutex.lock();
        finish(current, result);
        mutex.unlock();
        watcher->deleteLater();
    });
    watcher->setFuture(QtConcurrent::run(this, &AsyncHelloCommand::executeAsyncTaskFunc));
    QFuture<void*> future = current->future();
    mutex.unlock();

    return future;
}

You can find the complete working example here.

Have confidence in yourself – technology will never replace human beings

Children aren’t worried about the future. Young people aren’t worried about the future; they’re worried about us: us leading them into the future we envision

Jack Ma — Oct 2017, keynote speech at Alibaba Cloud’s Computing Conference in Hangzhou

AbstractCommand Model View ViewModel techniques

In the .NET XAML world, you have the ICommand, the CompositeCommand and the DelegateCommand. You use these commands to in a declarative way bind them as properties to XAML components like menu items and buttons. You can find an excellent book on this titled Prism 5.0 for WPF.

The ICommand defines two things: a canExecute property and an execute() method. The CompositeCommand allows you to combine multiple commands together, the DelegateCommand makes it possible to pass two delegates (functors or lambda’s); one for the canExecute evaluation and one for the execute() method.

The idea here is that you want to make it possible to put said commands in a ViewModel and then data bind them to your View (so in QML that’s with Q_INVOKABLE and Q_PROPERTY). Meaning that the action of the component in the view results in execute() being called, and the component in the view being enabled or not is bound to the canExecute bool property.

In QML that of course corresponds to a ViewModel.cpp for a View.qml. Meanwhile you also want to make it possible to in a declarative way use certain commands in the View.qml without involving the ViewModel.cpp.

So I tried making exactly that. I’ve placed it on github in a project I plan to use more often to collect MVVM techniques I come up with. And in this article I’ll explain how and what. I’ll stick to the header files and the QML file.

We start with defining a AbstractCommand interface. This is very much like .NET’s ICommand, of course:

#include <QObject>

class AbstractCommand : public QObject {
    Q_OBJECT
    Q_PROPERTY(bool canExecute READ canExecute NOTIFY canExecuteChanged)
public:
    AbstractCommand(QObject *parent = 0):QObject(parent){}
    Q_INVOKABLE virtual void execute() = 0;
    virtual bool canExecute() const = 0;
signals:
    void canExecuteChanged(bool canExecute);
};

We will also make a command that is very easy to use in QML, the EmitCommand:

#include <MVVM/Commands/AbstractCommand.h>

class EmitCommand : public AbstractCommand
{
    Q_OBJECT
    Q_PROPERTY(bool canExecute READ canExecute WRITE setCanExecute NOTIFY privateCanExecuteChanged)
public:
    EmitCommand(QObject *parent=0):AbstractCommand(parent){}

    void execute() Q_DECL_OVERRIDE;
    bool canExecute() const Q_DECL_OVERRIDE;
public slots:
    void setCanExecute(bool canExecute);
signals:
    void executes();
    void privateCanExecuteChanged();
private:
    bool canExe = false;
};

We make a command that allows us to combine multiple commands together as one. This is the equivalent of .NET’s CompositeCommand, here you have our own:

#include <QSharedPointer>
#include <QQmlListProperty>

#include <MVVM/Commands/AbstractCommand.h>
#include <MVVM/Commands/ListCommand.h>

class CompositeCommand : public AbstractCommand {
    Q_OBJECT

    Q_PROPERTY(QQmlListProperty<AbstractCommand> commands READ commands NOTIFY commandsChanged )
    Q_CLASSINFO("DefaultProperty", "commands")
public:
    CompositeCommand(QObject *parent = 0):AbstractCommand (parent) {}
    CompositeCommand(QList<QSharedPointer<AbstractCommand> > cmds, QObject *parent=0);
    ~CompositeCommand();
    void execute() Q_DECL_OVERRIDE;
    bool canExecute() const Q_DECL_OVERRIDE;
    void remove(const QSharedPointer<AbstractCommand> &cmd);
    void add(const QSharedPointer<AbstractCommand> &cmd);

    void add(AbstractCommand *cmd);
    void clearCommands();
    QQmlListProperty<AbstractCommand> commands();

signals:
    void commandsChanged();
private slots:
    void onCanExecuteChanged(bool canExecute);
private:
    QList<QSharedPointer<AbstractCommand> > cmds;
    static void appendCommand(QQmlListProperty<AbstractCommand> *lst, AbstractCommand *cmd);
    static AbstractCommand* command(QQmlListProperty<AbstractCommand> *lst, int idx);
    static void clearCommands(QQmlListProperty<AbstractCommand> *lst);
    static int commandCount(QQmlListProperty<AbstractCommand> *lst);
};

We also make a command that looks a lot like ListElement in QML’s ListModel:

#include <MVVM/Commands/AbstractCommand.h>

class ListCommand : public AbstractCommand
{
    Q_OBJECT
    Q_PROPERTY(AbstractCommand *command READ command WRITE setCommand NOTIFY commandChanged)
    Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)
public:
    ListCommand(QObject *parent = 0):AbstractCommand(parent){}
    void execute() Q_DECL_OVERRIDE;
    bool canExecute() const Q_DECL_OVERRIDE;
    AbstractCommand* command() const;
    void setCommand(AbstractCommand *newCommand);
    void setCommand(const QSharedPointer<AbstractCommand> &newCommand);
    QString text() const;
    void setText(const QString &newValue);
signals:
    void commandChanged();
    void textChanged();
private:
    QSharedPointer<AbstractCommand> cmd;
    QString txt;
};

Let’s now also make the equivalent for QML’s ListModel, CommandListModel:

#include <QObject>
#include <QQmlListProperty>

#include <MVVM/Commands/ListCommand.h>

class CommandListModel:public QObject {
    Q_OBJECT
    Q_PROPERTY(QQmlListProperty<ListCommand> commands READ commands NOTIFY commandsChanged )
    Q_CLASSINFO("DefaultProperty", "commands")
public:
    CommandListModel(QObject *parent = 0):QObject(parent){}
    void clearCommands();
    int commandCount() const;
    QQmlListProperty<ListCommand> commands();
    void appendCommand(ListCommand *command);
    ListCommand* command(int idx) const;
signals:
    void commandsChanged();
private:
    static void appendCommand(QQmlListProperty<ListCommand> *lst, ListCommand *cmd);
    static ListCommand* command(QQmlListProperty<ListCommand> *lst, int idx);
    static void clearCommands(QQmlListProperty<ListCommand> *lst);
    static int commandCount(QQmlListProperty<ListCommand> *lst);

    QList<ListCommand* > cmds;
};

Okay, let’s now put all this together in a simple example QML:

import QtQuick 2.3
import QtQuick.Window 2.0
import QtQuick.Controls 1.2

import be.codeminded.mvvm 1.0

import Example 1.0 as A

Window {
    width: 360
    height: 360
    visible: true

    ListView {
        id: listView
        anchors.fill: parent

        delegate: Item {
            height: 20
            width: listView.width
            MouseArea {
                anchors.fill: parent
                onClicked: if (modelData.canExecute) modelData.execute()
            }
            Text {
                anchors.fill: parent
                text: modelData.text
                color: modelData.canExecute ? "black" : "grey"
            }
        }

        model: comsModel.commands

        property bool combineCanExecute: false

        CommandListModel {
            id: comsModel

            ListCommand {
                text: "C++ Lambda command"
                command:  A.LambdaCommand
            }

            ListCommand {
                text: "Enable combined"
                command: EmitCommand {
                    onExecutes: { console.warn( "Hello1");
                        listView.combineCanExecute=true; }
                    canExecute: true
                }
            }

            ListCommand {
                text: "Disable combined"
                command: EmitCommand {
                    onExecutes: { console.warn( "Hello2");
                        listView.combineCanExecute=false; }
                    canExecute: true
                }
            }

            ListCommand {
                text: "Combined emit commands"
                command: CompositeCommand {
                    EmitCommand {
                        onExecutes: console.warn( "Emit command 1");
                        canExecute: listView.combineCanExecute
                    }
                    EmitCommand {
                        onExecutes: console.warn( "Emit command 2");
                        canExecute: listView.combineCanExecute
                    }
                }
            }
        }
    }
}

I made a task-bug for this on Qt, here.

Colleague tells me I write blogs in chats while I explain how to write a producer-consumer

I’m at home now. I don’t do non-public unpaid work. So let’s blog the example I’m making for him.

workplace.h

#ifndef Workplace_H
#define Workplace_H

#include <QObject>
#include <QFuture>
#include <QWaitCondition>
#include <QMutex>
#include <QStack>
#include <QList>
#include <QThread>
#include <QFutureWatcher>

class Workplace;

typedef enum {
    WT_INSERTS,
    WT_QUERY
} WorkplaceWorkType;

typedef struct {
    WorkplaceWorkType type;
    QList<int> values;
    QString query;
    QFutureInterface<bool> insertIface;
    QFutureInterface<QList<QStringList> > queryIface;
} WorkplaceWork;

class WorkplaceWorker: public QThread {
    Q_OBJECT
public:
    WorkplaceWorker(QObject *parent = NULL)
        : QThread(parent), m_running(false) { }
    void run() Q_DECL_OVERRIDE;
    void pushWork(WorkplaceWork *a_work);
private:
    QStack<WorkplaceWork*> m_ongoing;
    QMutex m_mutex;
    QWaitCondition m_waitCondition;
    bool m_running;
};

class Workplace: public QObject {
    Q_OBJECT
public:
    explicit Workplace(QObject *a_parent=0) : QObject (a_parent) {}
    bool insert(QList<int> a_values);
    QList<QStringList> query(const QString &a_param);
    QFuture<bool> insertAsync(QList<int> a_values);
    QFuture<QList<QStringList> > queryAsync(const QString &a_param);
private:
    WorkplaceWorker m_worker;
};

class App: public QObject {
    Q_OBJECT
public slots:
    void perform();
    void onFinished();
private:
    Workplace m_workplace;
};

#endif// Workplace_H

workplace.cpp

#include "workplace.h"

void App::onFinished()
{
    QFutureWatcher<bool> *watcher = static_cast<QFutureWatcher<bool>* > ( sender() );
    delete watcher;
}

void App::perform()
{
    for (int i=0; i<10; i++) {
       QList<int> vals;
       vals.append(1);
       vals.append(2);
       QFutureWatcher<bool> *watcher = new QFutureWatcher<bool>;
       connect (watcher, &QFutureWatcher<bool>::finished, this, &App::onFinished);
       watcher->setFuture( m_workplace.insertAsync( vals ) );
    }

    for (int i=0; i<10; i++) {
       QList<int> vals;
       vals.append(1);
       vals.append(2);
       qWarning() << m_workplace.insert( vals );
       qWarning() << m_workplace.query("test");
    }
}

void WorkplaceWorker::pushWork(WorkplaceWork *a_work)
{
    if (!m_running) {
        start();
    }

    m_mutex.lock();
    switch (a_work->type) {
    case WT_QUERY:
        m_ongoing.push_front( a_work );
    break;
    default:
        m_ongoing.push_back( a_work );
    }
    m_waitCondition.wakeAll();
    m_mutex.unlock();
}

void WorkplaceWorker::run()
{
    m_mutex.lock();
    m_running = true;
    while ( m_running ) {
        m_mutex.unlock();
        m_mutex.lock();
        if ( m_ongoing.isEmpty() ) {
            m_waitCondition.wait(&m_mutex);
        }
        WorkplaceWork *work = m_ongoing.pop();
        m_mutex.unlock();

        // Do work here and report progress
        sleep(1);

        switch (work->type) {
        case WT_QUERY: {
            // Report result here
            QList<QStringList> result;
            QStringList row;
            row.append("abc"); row.append("def");
            result.append(row);
            work->queryIface.reportFinished( &result );
            } break;

        case WT_INSERTS:
        default: {
            // Report result here
            bool result = true;
            work->insertIface.reportFinished( &result );
            } break;
        }

        m_mutex.lock();
        delete work;
    }
    m_mutex.unlock();
}

bool Workplace::insert(QList<int> a_values)
{
    WorkplaceWork *work = new WorkplaceWork;;
    QFutureWatcher<bool> watcher;
    work->type = WT_INSERTS;
    work->values = a_values;
    work->insertIface.reportStarted();
    watcher.setFuture ( work->insertIface.future() );
    m_worker.pushWork( work );
    watcher.waitForFinished();
    return watcher.result();
}

QList<QStringList> Workplace::query(const QString &a_param)
{
    WorkplaceWork *work = new WorkplaceWork;
    QFutureWatcher<QList<QStringList> > watcher;
    work->type = WT_QUERY;
    work->query = a_param;
    work->queryIface.reportStarted();
    watcher.setFuture ( work->queryIface.future() );
    m_worker.pushWork( work );
    watcher.waitForFinished();
    return watcher.result();
}

QFuture<bool> Workplace::insertAsync(QList<int> a_values)
{
    WorkplaceWork *work = new WorkplaceWork;
    work->type = WT_INSERTS;
    work->values = a_values;
    work->insertIface.reportStarted();
    QFuture<bool> future = work->insertIface.future();
    m_worker.pushWork( work );
    return future;
}

QFuture<QList<QStringList> > Workplace::queryAsync(const QString &a_param)
{
    WorkplaceWork *work = new WorkplaceWork;
    work->type = WT_QUERY;
    work->query = a_param;
    work->queryIface.reportStarted();
    QFuture<QList<QStringList> > future = work->queryIface.future();
    m_worker.pushWork( work );
    return future;
}

How do they do it? Asynchronous undo and redo editors

Imagine we want an editor that has undo and redo capability. But the operations on the editor are all asynchronous. This implies that also undo and redo are asynchronous operations.

We want all this to be available in QML, we want to use QFuture for the asynchronous stuff and we want to use QUndoCommand for the undo and redo capability.

But how do they do it?

First of all we will make a status object, to put the status of the asynchronous operations in (asyncundoable.h).

class AbstractAsyncStatus: public QObject
{
    Q_OBJECT

    Q_PROPERTY(bool success READ success CONSTANT)
    Q_PROPERTY(int extra READ extra CONSTANT)
public:
    AbstractAsyncStatus(QObject *parent):QObject (parent) {}
    virtual bool success() = 0;
    virtual int extra() = 0;
};

We will be passing it around as a QSharedPointer, so that lifetime management becomes easy. But typing that out is going to give us long APIs. So let’s make a typedef for that (asyncundoable.h).

typedef QSharedPointer<AbstractAsyncStatus> AsyncStatusPointer;

Now let’s make ourselves an undo command that allows us to wait for asynchronous undo and asynchronous redo. We’re combining QUndoCommand and QFutureInterface here (asyncundoable.h).

class AbstractAsyncUndoable: public QUndoCommand
{
public:
    AbstractAsyncUndoable( QUndoCommand *parent = nullptr )
        : QUndoCommand ( parent )
        , m_undoFuture ( new QFutureInterface<AsyncStatusPointer>() )
        , m_redoFuture ( new QFutureInterface<AsyncStatusPointer>() ) {}
    QFuture<AsyncStatusPointer> undoFuture()
        { return m_undoFuture->future(); }
    QFuture<AsyncStatusPointer> redoFuture()
        { return m_redoFuture->future(); }

protected:
    QScopedPointer<QFutureInterface<AsyncStatusPointer> > m_undoFuture;
    QScopedPointer<QFutureInterface<AsyncStatusPointer> > m_redoFuture;

};

Okay, let’s implement these with an example operation. First the concrete status object (asyncexample1command.h).

class AsyncExample1Status: public AbstractAsyncStatus
{
    Q_OBJECT
    Q_PROPERTY(bool example1 READ example1 CONSTANT)
public:
    AsyncExample1Status ( bool success, int extra, bool example1,
                          QObject *parent = nullptr )
        : AbstractAsyncStatus(parent)
        , m_example1 ( example1 )
        , m_success ( success )
        , m_extra ( extra ) {}
    bool example1() { return m_example1; }
    bool success() Q_DECL_OVERRIDE { return m_success; }
    int extra() Q_DECL_OVERRIDE { return m_extra; }
private:
    bool m_example1 = false;
    bool m_success = false;
    int m_extra = -1;
};

Let’s make a QUndoCommand that uses a timer to simulate asynchronous behavior. We could also use QtConcurrent’s run function to use a QThreadPool and QRunnable instances that also implement QFutureInterface, of course. Seasoned Qt developers know what I mean. For the sake of example, I wanted to illustrate that QFuture can also be used for asynchronous things that aren’t threads. We’ll use the lambda because QUndoCommand isn’t a QObject, so no easy slots. That’s the only reason (asyncexample1command.h).

class AsyncExample1Command: public AbstractAsyncUndoable
{
public:
    AsyncExample1Command(bool example1, QUndoCommand *parent = nullptr)
        : AbstractAsyncUndoable ( parent ), m_example1(example1) {}
    void undo() Q_DECL_OVERRIDE {
        m_undoFuture->reportStarted();
        QTimer *timer = new QTimer();
        timer->setSingleShot(true);
        QObject::connect(timer, &QTimer::timeout, [=]() {
            QSharedPointer<AbstractAsyncStatus> result;
            result.reset(new AsyncExample1Status ( true, 1, m_example1 ));
            m_undoFuture->reportFinished(&result);
            timer->deleteLater();
        } );
        timer->start(1000);
    }
    void redo() Q_DECL_OVERRIDE {
        m_redoFuture->reportStarted();
        QTimer *timer = new QTimer();
        timer->setSingleShot(true);
        QObject::connect(timer, &QTimer::timeout, [=]() {
            QSharedPointer<AbstractAsyncStatus> result;
            result.reset(new AsyncExample1Status ( true, 2, m_example1 ));
            m_redoFuture->reportFinished(&result);
            timer->deleteLater();
        } );
        timer->start(1000);
    }
private:
    QTimer m_timer;
    bool m_example1;
};

Let’s now define something we get from the strategy design pattern; a editor behavior. Implementations provide an editor all its editing behaviors (abtracteditorbehavior.h).

class AbstractEditorBehavior : public QObject
{
    Q_OBJECT
public:
    AbstractEditorBehavior( QObject *parent) : QObject (parent) {}

    virtual QFuture<AsyncStatusPointer> performExample1( bool example1 ) = 0;
    virtual QFuture<AsyncStatusPointer> performUndo() = 0;
    virtual QFuture<AsyncStatusPointer> performRedo() = 0;
    virtual bool canRedo() = 0;
    virtual bool canUndo() = 0;
};

So far so good, so let’s make an implementation that has a QUndoStack and that therefor is undoable (undoableeditorbehavior.h).

class UndoableEditorBehavior: public AbstractEditorBehavior
{
public:
    UndoableEditorBehavior(QObject *parent = nullptr)
        : AbstractEditorBehavior (parent)
        , m_undoStack ( new QUndoStack ){}

    QFuture<AsyncStatusPointer> performExample1( bool example1 ) Q_DECL_OVERRIDE {
        AsyncExample1Command *command = new AsyncExample1Command ( example1 );
        m_undoStack->push(command);
        return command->redoFuture();
    }
    QFuture<AsyncStatusPointer> performUndo() {
        const AbstractAsyncUndoable *undoable =
            dynamic_cast<const AbstractAsyncUndoable *>(
                    m_undoStack->command( m_undoStack->index() - 1));
        m_undoStack->undo();
        return const_cast<AbstractAsyncUndoable*>(undoable)->undoFuture();
    }
    QFuture<AsyncStatusPointer> performRedo() {
        const AbstractAsyncUndoable *undoable =
            dynamic_cast<const AbstractAsyncUndoable *>(
                    m_undoStack->command( m_undoStack->index() ));
        m_undoStack->redo();
        return const_cast<AbstractAsyncUndoable*>(undoable)->redoFuture();
    }
    bool canRedo() Q_DECL_OVERRIDE { return m_undoStack->canRedo(); }
    bool canUndo() Q_DECL_OVERRIDE { return m_undoStack->canUndo(); }
private:
    QScopedPointer<QUndoStack> m_undoStack;
};

Now we only need an editor, right (editor.h)?

class Editor: public QObject
{
    Q_OBJECT
    Q_PROPERTY(AbstractEditorBehavior* editorBehavior READ editorBehavior CONSTANT)
public:
    Editor(QObject *parent=nullptr) : QObject(parent)
        , m_editorBehavior ( new UndoableEditorBehavior ) { }
    AbstractEditorBehavior* editorBehavior() { return m_editorBehavior.data(); }
    Q_INVOKABLE void example1Async(bool example1) {
        QFutureWatcher<AsyncStatusPointer> *watcher = new QFutureWatcher<AsyncStatusPointer>(this);
        connect(watcher, &QFutureWatcher<AsyncStatusPointer>::finished,
                this, &Editor::onExample1Finished);
        watcher->setFuture ( m_editorBehavior->performExample1(example1) );
    }
    Q_INVOKABLE void undoAsync() {
        if (m_editorBehavior->canUndo()) {
            QFutureWatcher<AsyncStatusPointer> *watcher = new QFutureWatcher<AsyncStatusPointer>(this);
            connect(watcher, &QFutureWatcher<AsyncStatusPointer>::finished,
                    this, &Editor::onUndoFinished);
            watcher->setFuture ( m_editorBehavior->performUndo() );
        }
    }
    Q_INVOKABLE void redoAsync() {
        if (m_editorBehavior->canRedo()) {
            QFutureWatcher<AsyncStatusPointer> *watcher = new QFutureWatcher<AsyncStatusPointer>(this);
            connect(watcher, &QFutureWatcher<AsyncStatusPointer>::finished,
                    this, &Editor::onRedoFinished);
            watcher->setFuture ( m_editorBehavior->performRedo() );
        }
    }
signals:
    void example1Finished( AsyncExample1Status *status );
    void undoFinished( AbstractAsyncStatus *status );
    void redoFinished( AbstractAsyncStatus *status );
private slots:
    void onExample1Finished() {
        QFutureWatcher<AsyncStatusPointer> *watcher =
                dynamic_cast<QFutureWatcher<AsyncStatusPointer>*> (sender());
        emit example1Finished( watcher->result().objectCast<AsyncExample1Status>().data() );
        watcher->deleteLater();
    }
    void onUndoFinished() {
        QFutureWatcher<AsyncStatusPointer> *watcher =
                dynamic_cast<QFutureWatcher<AsyncStatusPointer>*> (sender());
        emit undoFinished( watcher->result().objectCast<AbstractAsyncStatus>().data() );
        watcher->deleteLater();
    }
    void onRedoFinished() {
        QFutureWatcher<AsyncStatusPointer> *watcher =
                dynamic_cast<QFutureWatcher<AsyncStatusPointer>*> (sender());
        emit redoFinished( watcher->result().objectCast<AbstractAsyncStatus>().data() );
        watcher->deleteLater();
    }
private:
    QScopedPointer<AbstractEditorBehavior> m_editorBehavior;
};

Okay, let’s register this up to make it known in QML and make ourselves a main function (main.cpp).

#include <QtQml>
#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <editor.h>
int main(int argc, char *argv[])
{
    QGuiApplication app(argc, argv);
    QQmlApplicationEngine engine;
    qmlRegisterType<Editor>("be.codeminded.asyncundo", 1, 0, "Editor");
    engine.load(QUrl(QStringLiteral("qrc:/main.qml")));
    return app.exec();
}

Now, let’s make ourselves a simple QML UI to use this with (main.qml).

import QtQuick 2.3
import QtQuick.Window 2.2
import QtQuick.Controls 1.2
import be.codeminded.asyncundo 1.0
Window {
    visible: true
    width: 360
    height: 360
    Editor {
        id: editor
        onUndoFinished: text.text = "undo"
        onRedoFinished: text.text = "redo"
        onExample1Finished: text.text = "whoohoo " + status.example1
    }
    Text {
        id: text
        text: qsTr("Hello World")
        anchors.centerIn: parent
    }
    Action {
        shortcut: "Ctrl+z"
        onTriggered: editor.undoAsync()
    }
    Action {
        shortcut: "Ctrl+y"
        onTriggered: editor.redoAsync()
    }
    Button  {
        onClicked: editor.example1Async(99);
    }
}

You can find the sources of this complete example at github. Enjoy!

RE: Bye Facebook

Wim made a stir in the land of the web. Good for Wim that he rid himself of the shackles of social media.

But how will we bring a generation of people, who are now more or less addicted to social media, to a new platform? And what should that platform look like?

I’m not a anthropologist, but I believe human nature of organizing around new concepts and techniques is that we, humans, start central and monolithic. Then we fine-tune it. We figure out that the central organization and monolithic implementation of it becomes a limiting factor. Then we decentralize it.

The next step for all those existing and potential so-called ‘online services’ is to become fully decentralized.

Every family or home should have its own IMAP and SMTP server. Should that be JMAP instead? Probably. But that ain’t the point. The fact that every family or home will have its own, is. For chat, XMPP’s s2s is like SMTP. Postfix is an implementation of SMTP like ejabberd is for XMPP’s s2s. We have Cyrus, Dovecot and others for IMAP, which is the c2s of course. And soon we’ll probably have JMAP, too. Addressability? IPv6.

Why not something like this for social media? For the next online appliance, too? Augmented reality worlds can be negotiated in a distributed fashion. Why must Second Life necessarily be centralized? Surely we can run Linden Lab’s server software, locally.

Simple, because money is not interested in anything non-centralized. Not yet.

In the other news, the Internet stopped working truly well ever since money became its driving factor.

ps. The surest way to corrupt a youth is to instruct him to hold in higher esteem those who think alike than those who think different. Quote by Friedrich Nietzsche.

Asynchronous undoable and redoable APIs

Combining QFuture with QUndoCommand made a lot of sense for us. The undo and the redo methods of the QUndoCommand can also be asynchronous, of course. We wanted to use QFuture without involving threads, because our asynchronosity is done through a process and IPC, and not a thread. It’s the design mistake of QtConcurrent‘s run method, in my opinion. That meant using QFutureInterface instead (which is undocumented, but luckily public – so it’ll remain with us until at least Qt’s 6.y.z releases).

So how do we make a QUndoCommand that has a undo, and that has a redo method that returns a asynchronous QFuture<ResultType>?

We just did that, today. I’m very satisfied with the resulting API and design. It might have helped if QUndoStack would be a QUndoStack<T> and QUndoCommand would have been a QUndoCommand<T> with undo and redo’s return type being T. Just an idea for the Qt 6.y.z developers.

The undoable editor that can open > 4 GB text files

We are making an editor for industrial uses at Heidenhain. This is to make big Klartext programs, editable. I’m sure other industries could also use that.

Nowadays these programs often come out of a conversion from a CAD-CAM format. Before you can mill and turn your pesky military secrets on one of the machines controlled by a Heidenhain set, you’ll have to tweak the program that you converted from your CAD-CAM product. We are making the editor for that.

I wrote on this blog how we will instantaneously open those >4GB files, ready for editing. It looks a lot like how I made the E-mail client modest open the headers instantaneously on the N900. Basically, having a partition or index table that gets mmapped.

We’re also making the overlaying (the changes made by the user) undoable. The APIs for that kinda look like this. All examples on my blog are amateur extracts of the real thing, of course.

I feel like it’s actually going to work out. Architecturally and organizationally the other developers in our team are getting at the right level of expertise and sense of wanting this.

That is most important for anything to make it happen.

It feels a bit like how Nokia was: I’m learning a lot about myself from techleading: how to propose a design, concept or idea; how to convince deeply technical people; how to push others to go further than what they can already do. How to make a team quit competing and start sharing a common goal. The infrastructure for that was provided to me by Nokia. At Heidenhain, I feel like having played a small role in it.

Making something that is ‘undoable editable’ with Qt

Among the problems we’ll face is that we want asynchronous APIs that are undoable and that we want to switch to read only, undoable editing, non-undoable editing and that QML doesn’t really work well with QFuture. At least not yet. We want an interface that is easy to talk with from QML. Yet we want to switch between complicated behaviors.

We will also want synchronous mode and asynchronous mode. Because I just invented that requirement out of thin air.

Ok, first the “design”. We see a lot of behaviors, for something that can do something. The behaviors will perform for that something, the actions it can do. That is the strategy design pattern, then. It’s the one about ducks and wing fly behavior and rocket propelled fly behavior and the ostrich that has a can’t fly behavior. For undo and redo, we have the command pattern. We have this neat thing in Qt for that. We’ll use it. We don’t reinvent the wheel. Reinventing the wheel is stupid.

Let’s create the duck. I mean, the thing-editor as I will use “Thing” for the thing that is being edited. We want copy (sync is sufficient), paste (must be aysnc), and edit (must be async). We could also have insert and delete, but those APIs would be just like edit. Paste is usually similar to insert, of course. Except that it can be a combined delete and insert when overwriting content. The command pattern allows you to make such combinations. Not the purpose of this example, though.

Enough explanation. Let’s start! The ThingEditor, is like the flying Duck in strategy. This is going to be more or less the API that we will present to the QML world. It could be your ViewModel, for example (ie. you could let your ThingViewModel subclass ThingEditor).

class ThingEditor : public QObject
{
    Q_OBJECT

    Q_PROPERTY ( ThingEditingBehavior* editingBehavior READ editingBehavior
                 WRITE setEditingBehavior NOTIFY editingBehaviorChanged )
    Q_PROPERTY ( Thing* thing READ thing WRITE setThing NOTIFY thingChanged )

public:
    explicit ThingEditor( QSharedPointer<Thing> &a_thing,
            ThingEditingBehavior *a_editBehavior,
            QObject *a_parent = nullptr );

    explicit ThingEditor( QObject *a_parent = nullptr );

    Thing* thing() const { return m_thing.data(); }
    virtual void setThing( QSharedPointer<Thing> &a_thing );
    virtual void setThing( Thing *a_thing );

    ThingEditingBehavior* editingBehavior() const { return m_editingBehavior.data(); }
    virtual void setEditingBehavior ( ThingEditingBehavior *a_editingBehavior );

    Q_INVOKABLE virtual void copyCurrentToClipboard ( );
    Q_INVOKABLE virtual void editCurrentAsync( const QString &a_value );
    Q_INVOKABLE virtual void pasteCurrentFromClipboardAsync( );

signals:
    void editingBehaviorChanged ();
    void thingChanged();
    void editCurrentFinished( EditCurrentCommand *a_command );
    void pasteCurrentFromClipboardFinished( EditCurrentCommand *a_command );

private slots:
    void onEditCurrentFinished();
    void onPasteCurrentFromClipboardFinished();

private:
    QScopedPointer<ThingEditingBehavior> m_editingBehavior;
    QSharedPointer<Thing> m_thing;
    QList<QFutureWatcher<EditCurrentCommand*> *> m_editCurrentFutureWatchers;
    QList<QFutureWatcher<EditCurrentCommand*> *> m_pasteCurrentFromClipboardFutureWatchers;
};

For the implementation of this class, I’ll only provide the non-obvious pieces. I’m sure you can do that setThing, setEditingBehavior and the constructor yourself. I’m also providing it only once, and also only for the EditCurrentCommand. The one about paste is going to be exactly the same.

void ThingEditor::copyCurrentToClipboard ( )
{
    m_editingBehavior->copyCurrentToClipboard( );
}

void ThingEditor::onEditCurrentFinished( )
{
    QFutureWatcher<EditCurrentCommand*> *resultWatcher
            = static_cast<QFutureWatcher<EditCurrentCommand*>*> ( sender() );
    emit editCurrentFinished ( resultWatcher->result() );
    if (m_editCurrentFutureWatchers.contains( resultWatcher )) {
        m_editCurrentFutureWatchers.removeAll( resultWatcher );
    }
    delete resultWatcher;
}

void ThingEditor::editCurrentAsync( const QString &a_value )
{
    QFutureWatcher<EditCurrentCommand*> *resultWatcher
            = new QFutureWatcher<EditCurrentCommand*>();
    connect ( resultWatcher, &QFutureWatcher<EditCurrentCommand*>::finished,
              this, &ThingEditor::onEditCurrentFinished, Qt::QueuedConnection );
    resultWatcher->setFuture ( m_editingBehavior->editCurrentAsync( a_value ) );
    m_editCurrentFutureWatchers.append ( resultWatcher );
}

For QUndo we’ll need a QUndoCommand. For each undoable action we indeed need to make such a command. You could add more state and pass it to the constructor. It’s common, for example, to pass Thing, or the ThingEditor or the behavior (this is why I used QSharedPointer for those: as long as your command lives in the stack, you’ll need it to hold a reference to that state).

class EditCurrentCommand: public QUndoCommand
{
public:
    explicit EditCurrentCommand( const QString &a_value,
                                 QUndoCommand *a_parent = nullptr )
        : QUndoCommand ( a_parent )
        , m_value ( a_value ) { }
    void redo() Q_DECL_OVERRIDE {
       // Perform action goes here
    }
    void undo() Q_DECL_OVERRIDE {
      // Undo what got performed goes here
    }
private:
    const QString &m_value;
};

You can (and probably should) also make this one abstract (and/or a so called pure interface), as you’ll usually want many implementations of this one (one for every kind of editing behavior). Note that it leaks the QUndoCommand instances unless you handle them (ie. storing them in a QUndoStack). That in itself is a good reason to keep it abstract.

class ThingEditingBehavior : public QObject
{
    Q_OBJECT

    Q_PROPERTY ( ThingEditor* editor READ editor WRITE setEditor NOTIFY editorChanged )
    Q_PROPERTY ( Thing* thing READ thing NOTIFY thingChanged )

public:
    explicit ThingEditingBehavior( ThingEditor *a_editor,
                                   QObject *a_parent = nullptr )
        : QObject ( a_parent )
        , m_editor ( a_editor ) { }

    explicit ThingEditingBehavior( QObject *a_parent = nullptr )
        : QObject ( a_parent ) { }

    ThingEditor* editor() const { return m_editor.data(); }
    virtual void setEditor( ThingEditor *a_editor );
    Thing* thing() const;

    virtual void copyCurrentToClipboard ( );
    virtual QFuture<EditCurrentCommand*> editCurrentAsync( const QString &a_value, bool a_exec = true );
    virtual QFuture<EditCurrentCommand*> pasteCurrentFromClipboardAsync( bool a_exec = true );

protected:
    virtual EditCurrentCommand* editCurrentSync( const QString &a_value, bool a_exec = true );
    virtual EditCurrentCommand* pasteCurrentFromClipboardSync( bool a_exec = true );

signals:
    void editorChanged();
    void thingChanged();

private:
    QPointer<ThingEditor> m_editor;
    bool m_synchronous = true;
};

That setEditor, the constructor, etc: these are too obvious to write here. Here are the non-obvious ones:

void ThingEditingBehavior::copyToClipboard ( )
{
}

EditCurrentCommand* ThingEditingBehavior::editCurrentSync( const QString &a_value, bool a_exec )
{
    EditCurrentCommand *ret = new EditCurrentCommand ( a_value );
    if ( a_exec )
        ret->redo();
    return ret;
}

QFuture<EditCurrentCommand*> ThingEditingBehavior::editCurrentAsync( const QString &a_value, bool a_exec )
{
    QFuture<EditCurrentCommand*> resultFuture =
            QtConcurrent::run( QThreadPool::globalInstance(), this,
                               &ThingEditingBehavior::editCurrentSync,
                               a_value, a_exec );
    if (m_synchronous)
        resultFuture.waitForFinished();
    return resultFuture;
}

And now we can make the whole thing undoable by making a undoable editing behavior. I’ll leave a non-undoable editing behavior as an exercise to the reader (ie. just perform redo() on the QUndoCommand, don’t store it in the QUndoStack and immediately delete or cmd->deleteLater() the instance).

Note that if m_synchronous is false, that (all access to) m_undoStack, and the undo and redo methods of your QUndoCommands, must be (made) thread-safe. The thread-safety is not the purpose of this example, though.

class UndoableThingEditingBehavior : public ThingEditingBehavior
{
    Q_OBJECT
public:
    explicit UndoableThingEditingBehavior( ThingEditor *a_editor,
                                           QObject *a_parent = nullptr );
protected:
    EditCellCommand* editCurrentSync( const QString &a_value, bool a_exec = true ) Q_DECL_OVERRIDE;
    EditCurrentCommand* pasteCurrentFromClipboardSync( bool a_exec = true ) Q_DECL_OVERRIDE;
private:
    QScopedPointer<QUndoStack> m_undoStack;
};

EditCellCommand* UndoableThingEditingBehavior::editCurrentSync( const QString &a_value, bool a_exec )
{
    Q_UNUSED(a_exec)
    EditCellCommand *undoable = ThingEditingBehavior::editCurrentSync(  a_value, false );
    m_undoStack->push( undoable );
    return undoable;
}

EditCellCommand* UndoableThingEditingBehavior::pasteCurrentFromClipboardSync( bool a_exec )
{
    Q_UNUSED(a_exec)
    EditCellCommand *undoable = ThingEditingBehavior::pasteCurrentFromClipboardSync( false );
    m_undoStack->push( undoable );
    return undoable;
}

Duck typing

Imagine you have a duck. Imagine you have a wall. Now imagine you throw the duck with a lot of force against a wall. Duck typing means that the duck hitting the wall quacks like a duck would.

ps. Replace wall with API and duck with ugly stupid script written by an idiot. You can leave quacks.

Binaries in git, release numbering, Git-Flow and Scrum at the CIA

Funny how even the software developers at the CIA have problems with idiots who want to put binaries in git. They also know about Git-Flow, my preferred git branching workflow. I kind of wonder how come, if they know about Git-Flow, we see so few leaked NSA and CIA tools with correct semver versioning. Sometimes it’s somewhat okayish, like you can see here. But v1.0-RC3 is not really semver if you see how they got there here. To start with, your alpha versions start with 0.0.x. So where are all those versions under 0.0.x that happened before release candidate 3? 1.0, 1.1-beta, 1.0-phase2, 1.0-beta1-, 1.0-beta-7. WTF guys. That’s not a good versioning scheme. Just call it 0.0.1, 0.0.2, 0.1.0, 0.1.1, 0.1.2 for the betas. And when the thing sees first usage, start calling it 1.0.0, 1.0.1, 1.0.2, 1.1.0, 1.1.1, 1.2.0 etc. What’s wrong with that? And how are all these words like alha-1, beta-2, phase2, etc any better? Maybe just fire your release maintainer! Admittedly for that 2.0.x series they at least tried to get it right.

The point is that packaging tools can be configured to let other packages depend on these version numbers. In x.y.z the x number has implications on API incompatibility whereas the y number can be used for compatible feature additions.

I can imagine that different malwares, exploits, rootkits, intrusion tools they develop would pose incompatibilities with each other, and that for example the NSA and CIA want to share libraries and link without having to recompile or repackage. So versioning to indicate ABI and API compatibility wouldn’t be a bad idea. Let’s hope in the next round of massive leaks we see them having learned good software development processes and practices.

They are doing Scrum sprints and do retrospectives, though. That’s not so bad.

How to expose a QList<MyListClass> in a ViewModel to QML

MyPlugin/MyPlugin.cpp:

#include <ViewModels/MyListClass.h>
#include <ViewModels/DisplayViewModel.h>

qmlRegisterUncreatableType<MyListClass>( a_uri, 1, 0, "MyListClass",
         "Use access via DisplayViewModel instead");
qmlRegisterType<DisplayViewModel>( a_uri, 1, 0, "DisplayViewModel");

Utils/MyQMLListUtils.h

#define MY_DECLARE_QML_LIST(type, name, owner, prop) \
QQmlListProperty<type> name(){ \
   return QQmlListProperty<type>( \
               this, 0,&owner::count ## type ## For ## name ## List, \
               &owner::at ## type ## For ## name ## List); \
} \
static int count ## type ## For ## name ## List(QQmlListProperty<type>*property){ \
   owner *m = qobject_cast<owner *>(property->object); \
   return m->prop.size(); \
} \
static type *at ## type ## For ## name ## List( \
        QQmlListProperty<type>*property, int index){ \
   owner *m = qobject_cast<owner *>(property->object); \
   return m->prop[index]; \
}

ViewModels/DisplayViewModel.h

#ifndef DISPLAYVIEWMODEL_H
#define DISPLAYVIEWMODEL_H

#include <QObject>
#include <QtQml>
#include <ViewModels/MyListClass.h>
#include <Utils/MyQMLListUtils.h>

class DisplayViewModel : public QObject
{
    Q_OBJECT

    Q_PROPERTY(constQString title READ title WRITE setTitle NOTIFY titleChanged )
    Q_PROPERTY(constQList<MyListClass*> objects READ objects
                                          NOTIFY objectsChanged ) 
    Q_PROPERTY( QQmlListProperty<MyListClass> objectList READ objectList
                                              NOTIFY objectsChanged )
public:
    explicit DisplayViewModel( QObject *a_parent = nullptr );
    explicit DisplayViewModel( const QString &a_title,
                               QList<MyListClass*> a_objects,
                               QObject *a_parent = nullptr );
    const QString title()
        { return m_title; }
    void setTitle( const QString &a_title ); 
    const QList<MyListClass*> objects ()
        { return m_objects; } 
    Q_INVOKABLE void appendObject( MyListClass *a_object);
    Q_INVOKABLE void deleteObject( MyListClass *a_object);
    Q_INVOKABLE void reset( );

protected:
    MY_DECLARE_QML_LIST(MyListClass, objectList, DisplayViewModel, m_objects)

signals:
    void titleChanged();
    void objectsChanged();

private:
    QString m_title;
    QList<MyListObject*> m_objects;
};

#endif// DISPLAYVIEWMODEL_H

DisplayViewModel.cpp

#include "DisplayViewModel.h"

DisplayViewModel::DisplayViewModel( const QString &a_title,
                                    QList<MyListClass*> a_objects,
                                    QObject *a_parent )
    : QObject ( a_parent )
    , m_title ( a_title )
    , m_objects ( a_objects )
{
    foreach (MyListClass* mobject, m_objects) {
        mobject->setParent (this);
    }
}

void DisplayViewModel::setTitle (const QString &a_title )
{
    if ( m_title != a_title ) {
        m_title = a_title;
        emit titleChanged();
    }
}

void DisplayViewModel::reset( )
{
    foreach ( MyListClass *mobject, m_objects ) {
        mobject->deleteLater();
    }
    m_objects.clear();
    emit objectsChanged();
}

void DisplayViewModel::appendObject( MyListClass *a_object )
{
    a_object->setParent( this );
    m_objects.append( a_object );
    emit objectsChanged();
}

void DisplayViewModel::deleteObject( MyListClass *a_object )
{
    if (m_objects.contains( a_object )) {
        m_objects.removeOne( a_object );
        a_object->deleteLater();
        emit objectsChanged();
    }
}

Tester.cpp

#include <ViewModels/DisplayViewModel.h>
#include <ViewModels/MyListClass.h>

QList<MyListClass*> objectList;
for( int i = 0; i < 100 ; ++i ) {
    objectList.append ( new MyListClass (i) );
}
DisplayViewModel *viewModel = new DisplayViewModel (objectList);
viewModel->appendObject ( new MyListClass (101) );

Display.qml

import QtQuick 2.5
import MyPlugin 1.0

Repeater { 
    property DisplayViewModel viewModel: DisplayViewModel { } 
    model: viewModel.objectList
    delegate: Item {
        property MyListClass object: modelData
        Text {
            text: object.property
        }
    }
}

Scrum is (best done) like a soccer team

As a freelancer I saw many companies, many situations and worked with many Project Managers, Product Owners, Scrum Masters and god knows what names the HR department came up with.

What is most important, in my experience, is that the people leading the team try to focus the people in the group on as few common goals as possible during one sprint. The more stories or goals the team has to finish, the more individualism and the fewer things will get done (with done being defined by your definition of done).

Differently put you should try to make your team work like how a soccer team plays. You try to make three, four or five goals per sprint. But you do this as a team.

Example: When a story isn’t finished at the end of the sprint; it’s the team’s fault. Not the fault of the one guy that worked on it. The team has to find a solution. If it’s always the same guy being lazy, that’s not the project’s or the team’s results. You or HR deals with that guy later. Doing so is outside of Scrum’s scope. It’s not for your retrospective discussion. But do sanction the team for not delivering.

Another example is not to put too much stories on the task board and yet to keep stories as small and/or well defined as possible. Too much stories or too large stories will result in every individual picking a different story (or subtask of the larger story) to be responsible for. At the end of the sprint none of these will be really finished. And the developers in the team won’t care about the other features being developed during the sprint. So they will dislike having to review other people’s features. They’ll have difficulty finding a reviewer. They won’t communicate with each other. They’ll become careless and dispassionate.

Your planning caused that. That makes you a bad team player. The coach is part of the team.

The Internet of crap – The Ioc. Now In Store!

Like I mentioned a few months ago, here we are again. More things equals more crap on the Internet. Not more utility. No. More crap. It’s only crap. With lower case ‘c’. The crap of the crap programmers of the crap is not worth wasting an expensive capital letter on.

Time to require CE marking for all that crap. Enough is enough.

Finally took the time to get certificates

Finally took the time to use certificates for codeminded.be and pvanhoof.be. Also the SMTP at mail.codeminded.be should now have a somewhat good TLS situation, too. But of course, whoever needed tell me something very secret … just met with me face to face. Duh.

My colleague in crime introduced me to keybase.io, which indeed looks quite nice and fantastic.

Congratulations to the Let’s encrypt initiative for making it really, really easy.

That certbot couldn’t parse my default-ssl in available-sites. No idea why. But it wasn’t in enabled-sites. After removing that original debian-package file, it all worked fine.

They probably also want to post a checksum of that “wget https://dl.eff.org/certbot-auto” thing there. When downloading and executing things on my server I usually do want to quickly and easily check and double-check it all.

The tool is also not super easy to use for anything that isn’t HTTPS. Especially SMTPS comes to mind.

The clouds

In the East there is a shark which is larger than all other fish. It changes into a bird whose wings are like clouds filling the sky. When this bird moves across the land, it brings a message from Corporate Headquarters. This message it drops into the midst of the programmers, like a seagull making its mark upon the beach. Then the bird mounts on the wind and, with the blue sky at its back, returns home.

Truly huge files and the problem of continuous virtual address space

As we all know does mmap, or even worse on Windows CreateFileMapping, need contiguous virtual address space for a given mapping size. That can become a problem when you want to load a file of a gigabyte with mmap.

The solution is of course to mmap the big file using multiple mappings. For example like adapting yesterday’s demo this way:

void FileModel::setFileName(const QString &fileName)
{
    ...
    if (m_file->open(QIODevice::ReadOnly)) {
        if (m_file->size() > MAX_MAP_SIZE) {
            m_mapSize = MAX_MAP_SIZE;
            m_file_maps.resize(1 + m_file->size() / MAX_MAP_SIZE, nullptr);
        } else {
            m_mapSize = static_cast(m_file->size());
            m_file_maps.resize(1, nullptr);
        }
        ...
    } else {
        m_index->open(QFile::ReadOnly);
        m_rowCount = m_index->size() / 4;
    }
    m_file_maps[0] = m_file->map(0, m_mapSize, QFileDevice::NoOptions);
    qDebug() << "Done loading " << m_rowCount << " lines";
    map_index = m_index->map(0, m_index->size(), QFileDevice::NoOptions);

    beginResetModel();
    endResetModel();
    emit fileNameChanged();
}

And in the data() function:

QVariant FileModel::data( const QModelIndex& index, int role ) const
{
    QVariant ret;
    ...
    quint32 mapIndex = pos_i / MAX_MAP_SIZE;
    quint32 map_pos_i = pos_i % MAX_MAP_SIZE;
    quint32 map_end_i = end_i % MAX_MAP_SIZE;
    uchar* map_file = m_file_maps[mapIndex];
    if (map_file == nullptr)
        map_file = m_file_maps[mapIndex] = m_file->map(mapIndex * m_mapSize, m_mapSize, QFileDevice::NoOptions);
    position = m_file_maps[mapIndex] + map_pos_i;
    if (position) {
            const int length = static_cast(end_i - pos_i);
            char *buffer = (char*) alloca(length+1);
            if (map_end_i >= map_pos_i)
                strncpy (buffer, (char*) position, length);
            else {
                const uchar *position2 = m_file_maps[mapIndex+1];
                if (position2 == nullptr) {
                    position2 = m_file_maps[mapIndex+1] = m_file->map((mapIndex+1) *
                         m_mapSize, m_mapSize, QFileDevice::NoOptions);
                }
                strncpy (buffer, (char*) position, MAX_MAP_SIZE - map_pos_i);
                strncpy (buffer + (MAX_MAP_SIZE - map_pos_i), (char*) position2, map_end_i);
            }
            buffer[length] = 0;
            ret = QVariant(QString(buffer));
        }
    }
    return ret;
}

You could also not use mmap for the very big source text file and use m_file.seek(map_pos_i) and m_file.read(buffer, length). The most important mapping is of course the index one, as the reading of the individual lines can also be done fast enough with normal read() calls (as long as you don’t have to do it for each and every line of the very big file and as long as you know in a O(1) way where the QAbstractListModel’s index.row()’s data is).

But you already knew that. Right?